师资队伍
您现在的位置:首页 >> 师资队伍 >> 教师介绍
教师介绍
刘鸿斌  (制浆造纸工程系)

基本信息

职务:党支部书记、系副主任

职称:副教授

电话:025-85427620

地址:9E508

邮箱:hbinjm@qq.com

个人简介:

刘鸿斌,博士,副教授,高级工程师,硕士生导师

  • 2015/4 - 至今,南京林业大学,轻工与食品学院,副教授

  • 2019/4 - 2022/3,华泰集团,高级工程师,企业博士后

  • 2017/12 - 2018/12,美国南加州大学(University of Southern California),化工系,国家公派访问学者

  • 2013/10 - 2014/12,瑞典乌普萨拉大学(Uppsala University),信息与技术学院,博士后

  • 2009/9 - 2013/8,韩国庆熙大学(Kyung Hee University),环境科学与工程,博士


主要研究方向:

化工、轻工、环境等复杂工业过程的建模、优化及控制

  • 深度学习

  • 机器学习

  • 软测量建模

  • 过程监测

  • 故障诊断


研究课题情况:

  1. 中国博士后科学基金特别资助项目

  2. 江苏省高等学校基础科学(自然科学)研究重大项目

  3. 山东省自然科学基金面上项目

  4. 山东省企业博士(后)集聚计划

  5. 山东省博士后创新项目

  6. 南京林业大学标志性成果培育建设项目

  7. 南京林业大学青年人才项目

  8. 南京林业大学高层次人才科研启动基金资助项目


代表性成果:

发表学术论文100多篇;授权发明专利、软件著作权20余件;参编教材1部。近年来的部分成果列举如下:SCI期刊论文

  1. Zhang, K.; Yang, J.; Sha, J.; Liu, H*. Dynamic slow feature analysis and random forest for subway indoor air quality modeling. Building and Environment, 2022, 213: 108876.

  2. Yang, J.; Wang, J.; Sha, J.; Dai, H.; Liu, H*. Quality-related monitoring of distributed process systems using dynamic concurrent partial least squares. Computers & Industrial Engineering, 2022, 164: 107893.

  3. Yang, D.; Wang, J.; Yan, X.; Liu, H*. Subway air quality modeling using improved deep learning framework. Process Safety and Environmental Protection, 2022, 163: 487-497.

  4. Wang, J.; Lu, Y.; Xin, C.; Yoo, C.; Liu, H*. Kernel PLS with AdaBoost ensemble learning for particulate matters forecasting in subway environment. Measurement, 2022, 204: 111974.

  5. Zhang, H.; Yang, C.; Shi, X.; Liu, H*. Effluent quality prediction in papermaking wastewater treatment processes using dynamic Bayesian networks. Journal of Cleaner Production, 2021, 282: 125396.

  6. Yang, C.; Zhang, Y.; Huang, M.; Liu, H*. Adaptive dynamic prediction of effluent quality in wastewater treatment processes using partial least squares embedded with relevance vector machine. Journal of Cleaner Production, 2021, 314: 128076.

  7. Ma, X.; Zhang, Y.; Zhang, F.; Liu, H*. Monitoring of papermaking wastewater treatment processes using t-distributed stochastic neighbor embedding. Journal of Environmental Chemical Engineering, 2021, 9(6): 106559.

  8. Liu, H.*; Yang, J.; Zhang, Y.; Yang, C. Monitoring of wastewater treatment processes using dynamic concurrent kernel partial least squares. Process Safety and Environmental Protection, 2021, 147: 274-282.

  9. Liu, H.*; Yang, C.; Huang, M.; Yoo, C. Soft sensor modeling of industrial process data using kernel latent variables-based relevance vector machine. Applied Soft Computing, 2020, 90: 106149.

  10. Liu, H.*; Zhang, Y.; Zhang, H. Prediction of effluent quality in papermaking wastewater treatment processes using dynamic kernel-based extreme learning machine. Process Biochemistry, 2020, 97: 72-79.

  11. Liu, H.*; Yang, C.; Huang, M.; Yoo, C. Multivariate statistical monitoring of subway indoor air quality using dynamic concurrent partial least squares. Environmental Science and Pollution Research, 2020, 27(4): 4159-4169.

  12. Liu, H.*; Yang, C.; Carlsson, B.; Qin, S. J.; Yoo, C. Dynamic nonlinear partial least squares modeling using Gaussian process regression. Industrial & Engineering Chemistry Research, 2019, 58(36): 16676-16686.

  13. Liu, H.*; Yang, C.; Huang, M.; Wang, D.; Yoo, C. Modeling of subway indoor air quality using Gaussian process regression. Journal of Hazardous Materials, 2018, 359: 266-273.

  14. 宋留; 杨冲; 张辉; 刘鸿斌*. 造纸废水处理过程的高斯过程回归软测量建模. 中国环境科学, 2018, 38(7): 2564-2571.

  15. 沈文浩,李军,刘鸿斌,等. 造纸过程控制与维护管理,北京:中国轻工业出版社,2017.